## Lecture 19: Probabilistic topic models II: LDA (part 2)

William Webber (william@williamwebber.com)

COMP90042, 2014, Semester 1, Lecture 19

## LDA diagram and process



1. Choose term probabilities for each topic: $\Phi_{i} \sim \mathcal{D}(\beta)$
2. Choose topic probabilities for each document: $\Theta_{d} \sim \mathcal{D}(\alpha)$
3. Choose the topic of each token: $z_{d n} \sim \mathcal{M}\left(\theta_{d}\right)$
4. Choose the token: $w_{d n} \sim \mathcal{M}\left(\phi_{z_{d n}}\right)$

## The multinomial distribution

- Let $X$ be a multinomial random variable
- A "realization" of $X$ takes on $k$ distinct values, $\left\{X_{1}, \ldots, X_{i}, \ldots, X_{k}\right\}$
- $X$ has $k+1$ parameters:
- $n>0$, the number of "trials"
- $\left\{p_{1}, \ldots, p_{k}\right\}$, the probability of each distinct value at each trial
$-0 \leq p_{i} \leq 1$
- $\sum_{i=1}^{k} p_{i}=1$
- i.e. $\mathbf{p}$ is a probability distribution over $k$ values
- $X_{j} \in\{0,1, \ldots, n\}$
- $\sum_{X_{i}}=n$
- Intuition
- Roll a biased $k$-sided dice $n$ times
- Count number of times each face turns up
- $X_{i}$ is the number of times the $i$ 'th face turns up
- There is a formula but we don't need to worry about it!


## The Dirichlet distribution

- Let $\psi$ be a Dirichlet random variable
- A "realization" of $\psi$ takes on $k$ values, $\left\{\psi_{k}, \ldots, \psi_{i}, \ldots, \psi_{k}\right\}$
- $0 \leq \psi_{i} \leq k$
- $\sum_{i=1}^{k} \psi_{i}=1$
- i.e. a realization of $\psi$ is itself a probability distribution
- $\psi$ has $k$ parameters, $\alpha=\left\{\alpha_{1}, \ldots, \alpha_{k}\right\}$, with $\alpha_{i}>0$
- Let $A=\sum \alpha_{i}$
- The expected value of $\psi_{i}$ is $\alpha_{i} / A$ (written $\mathbb{E}\left[\psi_{i}\right]=\alpha_{i} / A$ )
- The greater $A$, the closer $\psi_{i}$ is likely to be to $\alpha_{i} / A$
- A realization of $\psi$ can give us the parameters $\left\{p_{1}, \ldots, p_{k}\right\}$ for a multinomial variable $X$
- If $\alpha_{i}=\alpha_{j} \forall i, j$, we say that $\psi$ is symmetric
- There is a formula but we don't need to worry about it!


## The probability equations of LDA

$$
\begin{aligned}
P\left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{n} \mid \alpha, \beta\right) & =\prod_{i=1}^{n} P\left(\mathbf{w}_{i} \mid \alpha, \beta\right) \\
P\left(\mathbf{w}_{i} \mid \alpha, \beta\right) & =\int P\left(\mathbf{w}_{i} \mid \alpha, \phi\right) P(\phi \mid \beta) \mathrm{d} \beta \\
P\left(\mathbf{w}_{i} \mid \alpha, \phi\right) & =\int P\left(\mathbf{w}_{i}, \theta_{i} \mid \alpha, \phi\right) \mathrm{d} \theta_{i} \\
P\left(\mathbf{w}_{i}, \theta_{i} \mid \alpha, \phi\right) & =P\left(\mathbf{w}_{i} \mid \theta_{i}, \phi\right) P\left(\theta_{i} \mid \alpha\right) \\
P\left(\mathbf{w}_{i} \mid \theta_{i}, \phi\right) & =\prod_{j=1}^{m} P\left(w_{i, j} \mid \theta_{i}, \phi\right)^{c_{i, j}} \\
P\left(w_{i, j} \mid \theta_{i}, \phi\right) & =\sum_{k=1}^{K} P\left(z_{i, j}=k \mid \theta_{i}\right) P\left(w_{i, j} \mid \phi_{k}\right)
\end{aligned}
$$

$K$ number of topics
$\mathbf{w}_{i}$ bag of words (terms and $f_{d, t}$ ) for document $i$

## The components: $\theta_{i}$

- $\theta_{i}$ is the multinomial distribution over topics for document $i$
- There are $K$ topics (where $K$ is semi-arbitrarily chosen by us)
- Therefore $\theta_{i}$ has $K$ parameters
- $\theta_{i, k}$ is the probability that an arbitrary word in document $i$ will belong to topic $k$
- $\alpha$ is the prior to $\theta$
- That is, the probabilities $\left\{\theta_{i, 1}, \ldots, \theta_{i, K}\right\}$ are a "realization" of a Dirichlet random variable with parameters $\left\{\alpha_{1}, \ldots, \alpha_{K}\right\}$
- The same Dirichlet RV is prior to all $\theta_{i}$
- $\alpha$ is asymmetric, meaning we allow certain topics to be a priori more likely than others


## The components: $\phi_{k}$

- $\phi_{k}$ is the multinomial distribution over terms for topic $k$
- There are $m=|V|$ terms in the vocabulary
- Therefore $\phi_{k}$ has $m$ parameters
- $\phi_{k, i}$ is the probability that anarbitrary word produced by topic $k$ will be $V_{i}$
- $\beta$ is the Dirichlet prior to $\phi$
- That is, the probabilities $\left\{\phi_{i, 1}, \ldots, \phi_{i, m}\right\}$ are a "realization" of a Dirichlet random variable with parameters $\left\{\beta_{1}, \ldots, \beta_{m}\right\}$
- $\beta$ is symmetric, meaning that all words are a priori as likely for each topic
- This does not mean that
- the posterior distribution $\phi_{k}$ over terms for topics will be flat
- each $\phi_{k}$ will give the same distribution over terms


## Symmetric and asymmetric priors

Why is $\beta$ symmetric, but $\alpha$ asymmetric? Following Wallach et al., 2009

- Asymmetric $\alpha$ leads to more stable results
- In particular, models are more stable to choice of number of topics K
- Think back to LSI, where some topics are "more important" than others
- And model for topic $k \leq K$ is independent of choice of $K$
- However, asymmetric $\beta$ does not improve stability
- Asymmetric requires more parameters to fit than symmetric
- Therefore, only employ asymmetric priors if they provide some advantage
(In the full/pure Bayesian model, we apply yet another prior to $\alpha$, known as a gamma prior; in practice, this is approximated using empirical methods.)


## Deciphering the formulae: $P\left(w_{i, j} \mid \theta_{i}, \phi\right)$

$$
\begin{equation*}
P\left(w_{i, j} \mid \theta_{i}, \phi\right)=\sum_{k=1}^{K} P\left(z_{i, j}=k \mid \theta_{i}\right) P\left(w_{i, j} \mid \phi_{k}\right) \tag{1}
\end{equation*}
$$

- $P\left(w_{i, j}\right)$ is the prob that an arbitrary term in doc $i$ is the term $j$
- We don't care about the word position in the doc
- ....a standard assumption of the unigram term model
- $\phi_{k}$ is the probability distribution over terms for topic $k$
- Therefore, $P\left(w_{i, j} \mid \phi_{k}\right)$ is just $P\left(j \mid \phi_{k}\right)$
- $z_{i, j}$ is the topic that generates term $j$ of document $i$
- $P\left(z_{i, j}=k \mid \theta_{i}\right)$ is the probability that this topic is $k$
- $\theta_{i}$ is the prob dist over topics for document $i$
- Therefore, $P\left(z_{i, j}=k \mid \theta_{i}\right)$ is just $P\left(k \mid \theta_{i}\right)$


## Deciphering the formulae: $P\left(w_{i, j} \mid \theta_{i}, \phi\right)$ (cont.)

$$
\begin{equation*}
P\left(w_{i, j}=t \mid \theta_{i}, \phi\right)=\sum_{k=1}^{K} P\left(z_{i, j}=k \mid \theta_{i}\right) P\left(w_{i, j}=t \mid \phi_{k}\right) \tag{2}
\end{equation*}
$$

- $P\left(z_{i, j}=k \mid \theta_{i}\right) P\left(w_{i, j} \mid \phi_{k}\right)$ is the probability that the term is $j$ and the topic is $k$
- The term must come from exactly one topic
- Therefore, we sum these probabilities over all $K$ topics
- And this gives us $P\left(w_{i, j} \mid \theta_{i}, \phi\right)$
- That is, the probability that an arbitrary term in doc $i$ is $j$


## Deciphering the formulae: $P\left(\mathbf{w}_{i} \mid \theta_{i}, \phi\right)$

$$
\begin{equation*}
P\left(\mathbf{w}_{i} \mid \theta_{i}, \phi\right)=\prod_{j=1}^{m} P\left(w_{i, j} \mid \theta_{i}, \phi\right)^{c_{i, j}} \tag{3}
\end{equation*}
$$

- $c_{i, j}$ is the number of times that term $j$ occurs in document $i$
- We assume (unigram model) that these occurrences are independent
- Therefore the probability that term $j$ occurs $c_{i, j}$ times is the probability of each occurrence, raised to the $c_{i, j}$ 'th power
- We also assume (unigram model) that the occurrence of different terms is independent
- Therefore, the probability of the bag-of-words representation $\mathbf{w}_{i}$ of document $i$ is just the product of all the individual probabilities


## Deciphering the formulae: $P\left(\mathbf{w}_{i}, \theta_{i} \mid \alpha, \phi\right)$

$$
\begin{equation*}
P\left(\mathbf{w}_{i}, \theta_{i} \mid \alpha, \phi\right)=P\left(\mathbf{w}_{i} \mid \theta_{i}, \phi\right) P\left(\theta_{i} \mid \alpha\right) \tag{4}
\end{equation*}
$$

- $P\left(\mathbf{w}_{i}, \theta_{i} \mid \alpha, \phi\right)$ is the (joint) probability of observing:
- the bag-of-words representation $\mathbf{w}_{i}$ of document $i$
- document i's distribution over topics $\theta_{i}$
- We have previously figured out $P\left(\mathbf{w}_{i} \mid \theta_{i}, \phi\right)$
- The multinomial $\theta_{i}$ is an "observation" of the Dirichlet RV $\alpha$
- So $P\left(\theta_{i} \mid \alpha\right)$ is the prob of the multinomial $\theta_{i}$ given the prior $\alpha$
- There is a formula for this (that we won't worry about!)
- We assume conditional indepence of $\mathbf{w}_{i}$ and $\theta_{i}$
- So their joint probability is just the product of their individual (marginal) probabilities


## Deciphering the formulae: $P\left(\mathbf{w}_{i} \mid \alpha, \phi\right)$

$$
\begin{equation*}
P\left(\mathbf{w}_{i} \mid \alpha, \phi\right)=\int P\left(\mathbf{w}_{i}, \theta_{i} \mid \alpha, \phi\right) \mathrm{d} \theta_{i} \tag{5}
\end{equation*}
$$

- $P\left(\mathbf{w}_{i} \mid \alpha, \phi\right)$ is
- the probability of the bag-of-words document $i$
- given our prior for document distributions over topics $\alpha$
- and the (list of $k$ ) topic distributions over words $\phi$
- $\theta_{i}$ is the document distribution over topics for doc $i$
- We already have $P\left(\mathbf{w}_{i}, \theta_{i} \mid \alpha, \phi\right)$ (from previous step)
- We can "remove" $\theta_{i}$ by integrating over all $\theta_{i}$ 's
- If you're unfamiliar with calculus, think of the integral as analogous to a sum over a continuous variable


## Deciphering formulae: $P\left(\mathbf{w}_{i} \mid \alpha, \beta\right)$

$$
\begin{equation*}
P\left(\mathbf{w}_{i} \mid \alpha, \beta\right)=\int P\left(\mathbf{w}_{i} \mid \alpha, \phi\right) P(\phi \mid \beta) \mathrm{d} \beta \tag{6}
\end{equation*}
$$

- $\beta$ is our (symmetric) prior for topic distributions over terms
- We've already calculated $P\left(w_{i} \mid \alpha, \phi\right)$
- We can write:

$$
\begin{equation*}
P\left(\mathbf{w}_{i} \mid \alpha, \beta\right)=\int P\left(\mathbf{w}_{i} \mid \alpha, \beta, \phi\right) P(\phi \mid \alpha, \beta) \mathrm{d} \beta \tag{7}
\end{equation*}
$$

by the law of total probability

- Analogous to:

$$
\begin{equation*}
P(A)=\sum_{b} P(A \mid B=b) P(B=b) \tag{8}
\end{equation*}
$$

- $w_{i}$ is independent of $\beta$, given $\theta$, and $\phi$ is independent of $\alpha$
- Therefore, Equation 7 simplifies to Equation 6


## Deciphering the formulae: $P\left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{n} \mid \alpha, \beta\right)$

$$
\begin{equation*}
P\left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{n} \mid \alpha, \beta\right)=\prod_{i=1}^{n} P\left(\mathbf{w}_{i} \mid \alpha, \beta\right) \tag{9}
\end{equation*}
$$

- We assume that documents are probabilistically independent
- Therefore the probability of generating a set of documents $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right\}$
- ... is the product of the probability of generating each individual document


## The probability equations of LDA

$$
\begin{aligned}
P\left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{n} \mid \alpha, \beta\right) & =\prod_{i=1}^{n} P\left(\mathbf{w}_{i} \mid \alpha, \beta\right) \\
P\left(\mathbf{w}_{i} \mid \alpha, \beta\right) & =\int P\left(\mathbf{w}_{i} \mid \alpha, \phi\right) P(\phi \mid \beta) \mathrm{d} \beta \\
P\left(\mathbf{w}_{i} \mid \alpha, \phi\right) & =\int P\left(\mathbf{w}_{i}, \theta_{i} \mid \alpha, \phi\right) \mathrm{d} \theta_{i} \\
P\left(\mathbf{w}_{i}, \theta_{i} \mid \alpha, \phi\right) & =P\left(\mathbf{w}_{i} \mid \theta_{i}, \phi\right) P\left(\theta_{i} \mid \alpha\right) \\
P\left(\mathbf{w}_{i} \mid \theta_{i}, \phi\right) & =\prod_{j=1}^{m} P\left(w_{i, j} \mid \theta_{i}, \phi\right)^{c_{i, j}} \\
P\left(w_{i, j} \mid \theta_{i}, \phi\right) & =\sum_{k=1}^{K} P\left(z_{i, j}=k \mid \theta_{i}\right) P\left(w_{i, j} \mid \phi_{k}\right)
\end{aligned}
$$

## Solving LDA

Directly solving LDA would involve finding parameters that maximize the empirical likelihood $\mathcal{L}$ of the observed documents $\left\{\mathbf{w}_{1}, \ldots, \mathbf{w}_{n}\right\}$ :

$$
\begin{equation*}
\mathcal{L}=\prod_{j=1}^{m} \prod_{i=1}^{n} P\left(w_{i, j} \mid z_{i, j}, \phi\right) P\left(z_{i, j} \mid \theta_{i}\right) P\left(\theta_{d} \mid \alpha\right) P(\phi \mid \beta) \tag{10}
\end{equation*}
$$

- Note: parameters found are not $\alpha, \beta$
- Rather, they are parameters to $\phi, \theta$

These parameters cannot be directly solved as $z_{i, j}$ not observed.
Instead, an approximation method must be used.

## Gibbs sampling

A common approach is to use Gibbs sampling

- A Monte-Carlo Markov Chain method from statistical physics
- "Monte Carlo" means based on random simulation
- "Markov Chain" describes a random process in which each state depends only on the previous state
- Basic idea is in a complex model with many dependent variables:
- Sequentially sample each variable, dependent upon state of all other variables
- Observe averages over very large number of samples as probability estimates


## Collapsed Gibbs sampling

Collapsed Gibbs method developed by Griffiths and Steyvers, 2006:

- Marginalize out $\theta, \phi$
- Instead, estimate $P(\mathbf{z} \mid \mathbf{w})$ (that is, $P\left(z_{i, j} \mid w_{i, j}\right)$ for all $\left.i, j\right)$
- They derive the approximation:

$$
\begin{equation*}
P\left(z_{i, j} \mid \bar{z}_{i, j}\right) \propto\left(N_{i, z}+\alpha_{z}\right)\left(N_{z, j}+\beta\right) \tag{11}
\end{equation*}
$$

where
$\bar{z}_{i, j}$ all other topic assignments to words
$N_{i, z}$ number of times topic $z$ has been assigned to words in document $i$
$N_{z, j}$ number of times word $j$ has been assigned to topic $z$

- Iterate many, many times
- Count how many times each word assigned to each topic
- Normalize these counts to estimate $\theta_{i}, \phi_{k}$


## Further reading

- Blei, Ng, and Jordan, "Latent Dirichlet Allocation", JMLR, 2003
- Crain, Zhou, Yang, and Zha, "Dimensionality Reduction and Topic Modeling", Chapter 5 of Aggarwal and Zhai (ed.), Mining Text Data, 2012 (brief summary of Gibbs sampling).
- Sun, Deng, and Han, "Probabilistic Models for Text Mining", Chapter 8 of Aggarwal and Zhai (ed.), Mining Text Data, 2012 (gives $P\left(\mathbf{w}_{1}, \ldots, \mathbf{w}_{n} \mid \alpha, \beta\right)$ ).
- Griffiths and Steyvers, "Finding Scientific Topics", PNAS, 2004 (collapsed Gibbs sampling for solving LDA)

