Lecture 19: Probabilistic topic models II: LDA (part 2)

William Webber (william@williamwebber.com)

COMP90042, 2014, Semester 1, Lecture 19

LDA diagram and process

- 1. Choose term probabilities for each topic: $\Phi_i \sim \mathcal{D}(\beta)$
- 2. Choose topic probabilities for each document: $\Theta_d \sim \mathcal{D}(\alpha)$
- 3. Choose the topic of each token: $z_{dn} \sim \mathcal{M}(\theta_d)$
- 4. Choose the token: $w_{dn} \sim \mathcal{M}(\phi_{z_{dn}})$

The multinomial distribution

- Let X be a multinomial random variable
- ► A "realization" of X takes on k distinct values, {X₁,...,X_i,...,X_k}
- X has k + 1 parameters:
 - ▶ n > 0, the number of "trials"
 - ▶ $\{p_1, \ldots, p_k\}$, the probability of each distinct value at each trial

$$0 \le p_i \le 1$$

$$\sum_{k=1}^{k} p_i = 1$$

• $\sum_{i=1}^{k} p_i = 1$ • i.e. **p** is a probability distribution over k values

$$\blacktriangleright X_j \in \{0, 1, \ldots, n\}$$

•
$$\sum_{X_i} = n$$

Intuition

- Roll a biased k-sided dice n times
- Count number of times each face turns up
- X_i is the number of times the i'th face turns up
- There is a formula but we don't need to worry about it!

The Dirichlet distribution

- Let ψ be a Dirichlet random variable
- A "realization" of ψ takes on k values, $\{\psi_k, \ldots, \psi_i, \ldots, \psi_k\}$

•
$$0 \leq \psi_i \leq k$$

$$\blacktriangleright \sum_{i=1}^{\kappa} \psi_i = 1$$

 \blacktriangleright i.e. a realization of ψ is itself a probability distribution

• ψ has k parameters, $\alpha = \{\alpha_1, \dots, \alpha_k\}$, with $\alpha_i > 0$

• Let
$$A = \sum \alpha_i$$

- The expected value of ψ_i is α_i/A (written $\mathbb{E}[\psi_i] = \alpha_i/A$)
- The greater A, the closer ψ_i is likely to be to α_i/A
- ► A realization of ψ can give us the parameters {p₁,..., p_k} for a multinomial variable X
- If $\alpha_i = \alpha_j \, \forall i, j$, we say that ψ is symmetric
- There is a formula but we don't need to worry about it!

The probability equations of LDA

$$P(\mathbf{w}_{1},...,\mathbf{w}_{n}|\alpha,\beta) = \prod_{i=1}^{n} P(\mathbf{w}_{i}|\alpha,\beta)$$

$$P(\mathbf{w}_{i}|\alpha,\beta) = \int P(\mathbf{w}_{i}|\alpha,\phi)P(\phi|\beta) d\beta$$

$$P(\mathbf{w}_{i}|\alpha,\phi) = \int P(\mathbf{w}_{i},\theta_{i}|\alpha,\phi) d\theta_{i}$$

$$P(\mathbf{w}_{i},\theta_{i}|\alpha,\phi) = P(\mathbf{w}_{i}|\theta_{i},\phi)P(\theta_{i}|\alpha)$$

$$P(\mathbf{w}_{i}|\theta_{i},\phi) = \prod_{j=1}^{m} P(w_{i,j}|\theta_{i},\phi)^{c_{i,j}}$$

$$P(w_{i,j}|\theta_{i},\phi) = \sum_{k=1}^{K} P(z_{i,j} = k|\theta_{i})P(w_{i,j}|\phi_{k})$$

K number of topics

 \mathbf{w}_i bag of words (terms and $f_{d,t}$) for document *i*

・ロト・日本・モート モー うへぐ

The components: θ_i

- θ_i is the multinomial distribution over topics for document *i*
- ▶ There are K topics (where K is semi-arbitrarily chosen by us)
- Therefore θ_i has K parameters
- θ_{i,k} is the probability that an arbitrary word in document i will belong to topic k
- α is the prior to θ
 - That is, the probabilities {θ_{i,1},...,θ_{i,K}} are a "realization" of a Dirichlet random variable with parameters {α₁,...,α_K}

- The same Dirichlet RV is prior to all θ_i
- α is asymmetric, meaning we allow certain topics to be a priori more likely than others

The components: ϕ_k

- ϕ_k is the multinomial distribution over terms for topic k
- There are m = |V| terms in the vocabulary
- Therefore ϕ_k has *m* parameters
- ▶ φ_{k,i} is the probability that anarbitrary word produced by topic k will be V_i
- $\blacktriangleright~\beta$ is the Dirichlet prior to ϕ
 - ► That is, the probabilities {φ_{i,1},...,φ_{i,m}} are a "realization" of a Dirichlet random variable with parameters {β₁,...,β_m}
- \blacktriangleright β is symmetric, meaning that all words are a priori as likely for each topic
 - This does not mean that
 - ▶ the posterior distribution ϕ_k over terms for topics will be flat
 - each ϕ_k will give the same distribution over terms

Symmetric and asymmetric priors

Why is β symmetric, but α asymmetric? Following Wallach et al., 2009

- Asymmetric α leads to more stable results
- In particular, models are more stable to choice of number of topics K
 - Think back to LSI, where some topics are "more important" than others
 - And model for topic $k \leq K$ is independent of choice of K
- However, asymmetric β does not improve stability
- Asymmetric requires more parameters to fit than symmetric
- Therefore, only employ asymmetric priors if they provide some advantage

(In the full/pure Bayesian model, we apply yet another prior to α , known as a gamma prior; in practice, this is approximated using empirical methods.)

Deciphering the formulae: $P(w_{i,j}|\theta_i, \phi)$

$$P(w_{i,j}|\theta_i,\phi) = \sum_{k=1}^{K} P(z_{i,j} = k|\theta_i) P(w_{i,j}|\phi_k)$$
(1)

- P(w_{i,j}) is the prob that an arbitrary term in doc i is the term j
 - We don't care about the word position in the doc
 - ...a standard assumption of the unigram term model
- ϕ_k is the probability distribution over terms for topic k
- Therefore, $P(w_{i,j}|\phi_k)$ is just $P(j|\phi_k)$
- z_{i,j} is the topic that generates term j of document i
- $P(z_{i,j} = k | \theta_i)$ is the probability that this topic is k
- θ_i is the prob dist over topics for document *i*
- Therefore, $P(z_{i,j} = k | \theta_i)$ is just $P(k | \theta_i)$

Deciphering the formulae: $P(w_{i,j}|\theta_i, \phi)$ (cont.)

$$P(w_{i,j}=t|\theta_i,\phi)=\sum_{k=1}^{K}P(z_{i,j}=k|\theta_i)P(w_{i,j}=t|\phi_k) \qquad (2)$$

- P(z_{i,j} = k|θ_i)P(w_{i,j}|φ_k) is the probability that the term is j and the topic is k
- The term must come from exactly one topic
- Therefore, we sum these probabilities over all K topics
- And this gives us $P(w_{i,j}|\theta_i, \phi)$
 - That is, the probability that an arbitrary term in doc i is j

Deciphering the formulae: $P(\mathbf{w}_i | \theta_i, \phi)$

$$P(\mathbf{w}_i|\theta_i,\phi) = \prod_{j=1}^m P(w_{i,j}|\theta_i,\phi)^{c_{i,j}}$$
(3)

- c_{i,j} is the number of times that term j occurs in document i
- We assume (unigram model) that these occurrences are independent
- Therefore the probability that term j occurs c_{i,j} times is the probability of each occurrence, raised to the c_{i,j}'th power
- We also assume (unigram model) that the occurrence of different terms is independent
- Therefore, the probability of the bag-of-words representation
 w_i of document *i* is just the product of all the individual probabilities

Deciphering the formulae: $P(\mathbf{w}_i, \theta_i | \alpha, \phi)$

$$P(\mathbf{w}_i, \theta_i | \alpha, \phi) = P(\mathbf{w}_i | \theta_i, \phi) P(\theta_i | \alpha)$$
(4)

- $P(\mathbf{w}_i, \theta_i | \alpha, \phi)$ is the (joint) probability of observing:
 - the bag-of-words representation w_i of document i
 - document i's distribution over topics θ_i
- We have previously figured out $P(\mathbf{w}_i | \theta_i, \phi)$
- The multinomial θ_i is an "observation" of the Dirichlet RV α
- So $P(\theta_i | \alpha)$ is the prob of the multinomial θ_i given the prior α
 - There is a formula for this (that we won't worry about!)
- We assume conditional indepence of \mathbf{w}_i and θ_i
- So their joint probability is just the product of their individual (marginal) probabilities

Deciphering the formulae: $P(\mathbf{w}_i | \alpha, \phi)$

$$P(\mathbf{w}_i | \alpha, \phi) = \int P(\mathbf{w}_i, \theta_i | \alpha, \phi) \, \mathrm{d}\theta_i \tag{5}$$

(日) (同) (三) (三) (三) (○) (○)

• $P(\mathbf{w}_i | \alpha, \phi)$ is

- the probability of the bag-of-words document i
- \blacktriangleright given our prior for document distributions over topics α
- and the (list of k) topic distributions over words \u03c6
- θ_i is the document distribution over topics for doc *i*
- We already have $P(\mathbf{w}_i, \theta_i | \alpha, \phi)$ (from previous step)
- We can "remove" θ_i by integrating over all θ_i 's
 - If you're unfamiliar with calculus, think of the integral as analogous to a sum over a continuous variable

Deciphering formulae: $P(\mathbf{w}_i | \alpha, \beta)$

$$P(\mathbf{w}_i|\alpha,\beta) = \int P(\mathbf{w}_i|\alpha,\phi) P(\phi|\beta) \,\mathrm{d}\beta \tag{6}$$

- β is our (symmetric) prior for topic distributions over terms
- We've already calculated $P(w_i | \alpha, \phi)$
- We can write:

$$P(\mathbf{w}_i|\alpha,\beta) = \int P(\mathbf{w}_i|\alpha,\beta,\phi) P(\phi|\alpha,\beta) \,\mathrm{d}\beta \tag{7}$$

by the law of total probability

Analogous to:

$$P(A) = \sum_{b} P(A|B=b)P(B=b)$$
(8)

くしゃ 本理 キャイボ キャー ほう うらう

- ▶ w_i is independent of β , given θ , and ϕ is independent of α
- Therefore, Equation 7 simplifies to Equation 6

Deciphering the formulae: $P(\mathbf{w}_1, \ldots, \mathbf{w}_n | \alpha, \beta)$

$$P(\mathbf{w}_1,\ldots,\mathbf{w}_n|\alpha,\beta) = \prod_{i=1}^n P(\mathbf{w}_i|\alpha,\beta)$$
(9)

- We assume that documents are probabilistically independent
- ► Therefore the probability of generating a set of documents {w₁,..., w_n}
- ... is the product of the probability of generating each individual document

The probability equations of LDA

$$P(\mathbf{w}_{1},...,\mathbf{w}_{n}|\alpha,\beta) = \prod_{i=1}^{n} P(\mathbf{w}_{i}|\alpha,\beta)$$

$$P(\mathbf{w}_{i}|\alpha,\beta) = \int P(\mathbf{w}_{i}|\alpha,\phi)P(\phi|\beta) d\beta$$

$$P(\mathbf{w}_{i}|\alpha,\phi) = \int P(\mathbf{w}_{i},\theta_{i}|\alpha,\phi) d\theta_{i}$$

$$P(\mathbf{w}_{i},\theta_{i}|\alpha,\phi) = P(\mathbf{w}_{i}|\theta_{i},\phi)P(\theta_{i}|\alpha)$$

$$P(\mathbf{w}_{i}|\theta_{i},\phi) = \prod_{j=1}^{m} P(w_{i,j}|\theta_{i},\phi)^{c_{i,j}}$$

$$P(w_{i,j}|\theta_{i},\phi) = \sum_{k=1}^{K} P(z_{i,j} = k|\theta_{i})P(w_{i,j}|\phi_{k})$$

Solving LDA

Directly solving LDA would involve finding parameters that maximize the empirical likelihood \mathcal{L} of the observed documents $\{\mathbf{w}_1, \ldots, \mathbf{w}_n\}$:

$$\mathcal{L} = \prod_{j=1}^{m} \prod_{i=1}^{n} P(w_{i,j}|z_{i,j},\phi) P(z_{i,j}|\theta_i) P(\theta_d|\alpha) P(\phi|\beta)$$
(10)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Note: parameters found are not α , β
- Rather, they are parameters to ϕ , θ

These parameters cannot be directly solved as $z_{i,j}$ not observed.

Instead, an approximation method must be used.

Gibbs sampling

A common approach is to use Gibbs sampling

- A Monte-Carlo Markov Chain method from statistical physics
 - "Monte Carlo" means based on random simulation
 - "Markov Chain" describes a random process in which each state depends only on the previous state
- Basic idea is in a complex model with many dependent variables:
 - Sequentially sample each variable, dependent upon state of all other variables

 Observe averages over very large number of samples as probability estimates

Collapsed Gibbs sampling

Collapsed Gibbs method developed by Griffiths and Steyvers, 2006:

- Marginalize out θ , ϕ
- ▶ Instead, estimate $P(\mathbf{z}|\mathbf{w})$ (that is, $P(z_{i,j}|w_{i,j})$ for all i, j)
- They derive the approximation:

$$P(z_{i,j}|\bar{z}_{i,j}) \propto (N_{i,z} + \alpha_z)(N_{z,j} + \beta)$$
(11)

where

- $\bar{z}_{i,j}$ all other topic assignments to words
- $N_{i,z}$ number of times topic z has been assigned to words in document i
- $N_{z,j}$ number of times word j has been assigned to topic z
- Iterate many, many times
- Count how many times each word assigned to each topic
- ► Normalize these counts to estimate θ_i , ϕ_k

Further reading

- Blei, Ng, and Jordan, "Latent Dirichlet Allocation", JMLR, 2003
- Crain, Zhou, Yang, and Zha, "Dimensionality Reduction and Topic Modeling", Chapter 5 of Aggarwal and Zhai (ed.), *Mining Text Data*, 2012 (brief summary of Gibbs sampling).
- Sun, Deng, and Han, "Probabilistic Models for Text Mining", Chapter 8 of Aggarwal and Zhai (ed.), *Mining Text Data*, 2012 (gives P(w₁,...,w_n|α, β)).
- Griffiths and Steyvers, "Finding Scientific Topics", PNAS, 2004 (collapsed Gibbs sampling for solving LDA)