
Lecture 9: Support Vector Machines

William Webber (william@williamwebber.com)

COMP90042, 2014, Semester 1, Lecture 8

What we’ll learn in this lecture

Support Vector Machines (SVMs)

I a highly robust and effective classifier

I theory of maximum-margin hyperplane

I transforming data into higher dimensional space

I soft-margin for classifier errors

I practicalities of use with text classification

Support Vector Machines (SVM)

Basic concepts of (binary) SVMs:

I Project training data into feature space
I Find the maximum-margin hyperplane (MMH) between

classes
I Hyperplane is generalization of line to > 3 dimensions

I MMH completely separates training data into positive and
negative classes

I . . . and maximizes distance of nearest examples from
hyperplane

I These nearest examples are called the support vectors

Support vectors and separating hyperplane

Figure : Maximum margin hyperplane and support vectors (Wikipedia)

Calculating MMH: math

Labelled training examples

(y1, x1), . . . , (y`, x`), yi ∈ {−1, 1} (1)

separable if exists vector w and scalar b such that:

yi (w · xi + b) ≥ 1, i = 1, . . . , ` (2)

(· is dot product). w describes angle of hyperplane, being vector
perpendicular to it; b (“bias”) locates it from origin, relative to w.
Optimal hyperplane:

wo · x + b0 = 0 (3)

separates with maximal margin. Maths1 shows this is one that
minimizes |w| under constraint (2).

1Cortes and Vapnik (1995)

Calculating MMH: implementation

min(|w|), s.t. yi (w · xi + b) ≥ 1, i = 1, . . . , ` (4)

I A quadratic programming problem

I Requires O(n2) space in standard QP implementations

I But all that matters are (candidate) support vectors
I This allows efficient decomposition methods, giving linear

space and time
I E.g. note that SV of full set must be SV in any subset it

occurs in
I So calculate SV for subsets, merge2

2Cortes and Vapnik (1995). See also Joachims (1998).

Classifying new examples

I Model is (w0, b0)

I More maths shows that w0 expressible as linear combination
of support vectors Z:

w0 =
∑
zi∈Z

αizi , αi > 0 (5)

I For unlabelled example x, calculate:

ŷ = w0 · x + b0 =
∑
zi∈Z

αizi · z + b0 (6)

I Predict class of x from sign of y

I |y | gives strength of prediction

Linear separability

I Most problems not linearly separable
I Two (not mutually exclusive) solutions:

I Project data into higher-dimensional space (more chance of
being separable)

I Allow some training points to fall on wrong side of hyperplane
(with penalty)

Mapping to higher dimensional space

I Data points mapped to higher dimensional (feature) space

I E.g. for polynomial space, extend / replace raw features:

x1, ..., xn (n dimensions) (7)

with:
x21 , ..., x

2
n (n dimensions) (8)

plus:

x1x2, x1x3, ..., xnxn−1

(
n(n − 1)

2
dimensions

)
(9)

I Calculate separating hyperplane in higher-dimensional space

Higher-dimensional space: why?

Mapping to higher-dimensional space

I Makes linearly non-separable problem separable (perhaps)

I Finds important relationships between features
I Remove monotonic assumptions from features

I In linear space, features must be monotonically related to class
(e.g., the greater the score of feature x , the greater evidence
for class y)

I Some features not like this (e.g., weight as predictor of health)
I (Some) mappings to higher-dimensional space allow for

discovery of more complex relations

But how is this even possible? Don’t we get an explosion of
features?

The kernel trick

I Calculation of SVMs uses dot-products throughout

I For certain classes of projections ϕ(x), there exist a kernel
function K (x, y) such that:

K (x, y) = ϕ(x) · ϕ(y) (10)

I For example the kernel function:

K (x, y) = (x · y + 1)d (11)

is equivalent to a mapping into degree d polynomial space.

I Simply replace dot product with K () throughout in
computation of SVM

I Then linear hyperplane effectively (and cheaply) calculated on
higher-d space

Soft-margin classifiers

Figure : Soft-margin SVM (from StackOverflow)

I 2nd solution to linear non-separability: allow errors
I i.e. training examples within margin, or on wrong side of

hyperplane
I Penalize errors by how “wrong” they are
I Solve minimization problem with error penalty added

Soft-margin: maths

Change hard-margin:

yi (w · xi + b) ≥ 1, i = 1, . . . , ` (12)

to soft-margin:

yi (w · xi + b) ≥ 1− ξi , ξi ≥ 0 (13)

where ξi is “slack variable” for xi . Then solve:

argmin
w,ξ,b

{
1

2
|w|2 + C

n∑
i=1

ξi

}
(14)

(where C is our constant slack parameter, related to the number of
training examples) subject to the constraint in (13)

SVM: practical considerations

I Choice of kernel function is trial-and-error
I but some insight into data can help (e.g. are features

monotonic?)

I Soft-margin classifiers generally used now
I SVM reputedly “robust”:

I Doesn’t get confused by correlated features
I Doesn’t overfit
I Few or no parameters to tune

I So we can “throw features at it” (at least as first pass)

SVM for text classification

I Linear SVM (i.e. no kernel transformations), with soft
margins, typically most effective

I Large feature space
I Feature monotonicity

I SVM consistently best or near-best text classification
effectiveness (over Rocchio, kNN, linear-least square fit, Naive
Bayes, MaxEnt, decision trees, etc.)

I Maxent / logistic regression (see 2nd half of course) and kNN
come closest

I Drawback: model is difficult to interpret
I Based on Support Vectors (marginal documents)
I Hard to say what features (terms) are strong evidence
I Non-interpretability common with geometric methods

Looking back and forward

Back

I SVMs (like kNN and Rocchio) based
upon geometric model (but
partitioning, not similarity)

I Finds maximally separating hyperplane
between training data classes;
represented by marginal support
vectors (training examples)

I Can transform space into higher
dimensions and efficiently calculate
using kernel trick

I Soft-margin version allows classifier
errors, with penalty

I SVM a robust classifier, performs well
for text classification

Looking back and forward

Forward

I Later in course, will look at
probabilistic classifiers, and further
topics in classification

I Next lecture: start on probabilistic
models of document similarity

Further reading

I Cortes and Vapnik, “Support-Vector Network”, Machine Learning,
1995 (Vapnik is the inventor of SVMs; this paper gives a readable
introduction to the theory, and then describe soft-margin
hyperplane).

I Joachims, “Making Large-Scale SVM Learning Practical”, 1998
(describes implementation of decomposition method to optimize
calculation of SVMs).

I Joachims, “Text Categorization with Support Vector Machines:
Learning with Many Relevant Features”, 1998 (compares SVM with
Naive Bayes, Rocchio, C4.5, and kNN)

I Lewis, Yang, Rose, and Li, “RCV1: A New Benchmark Collection
for Text Categorization Research”, 2004 (compares SVM with kNN
and Rocchio)

	Support Vector Machines
	The hyperplane
	Projecting the space
	Soft-margin classifiers

	SVM in practice
	Practical considerations
	Text classification

	Summary
	Summary

